
A Method for Convex Black-Box Integer Global
Optimization

Jeffrey Larson, Sven Leyffer, Prashant Palkar, Stefan M. Wild

Argonne National Laboratory

July 15, 2019



Problem formulation
Derivative-Free Optimization with Unrelaxable Integers

minimize
x

f (S(x)) subject to x ∈ X ⊂ Zp × Rq

1. Evaluation involves S(x) numerical simulation (computationally
expensive)
I derivatives ∇xS unavailable or expensive to compute
I single evaluation of S(x) can take minutes/hours/days

2. Unrelaxable integers, e.g. # receiver panels
I Unrelaxable: simulation cannot run at fractional values!

2 of 17
.



Background

Some applications
I Design of concentrating solar power plants (Pascal et al, 2011)
I Performance tuning codes on high-performance computers

(Balaprakash et al, 2014) etc.

Addressing integer variables
I heuristic approaches: rounding integer variables (Mueller et al,

2013)
I patten-search methods (Abramson et al, 2008; Audet et al, 2001)
I definitions of minimizers and deficiencies (Newby and Ali, 2015)
I primitive directions and nonmonotone line searches with integer

variables (Liuzzi et al, 2018)
I no outer approximation (∇xS is unavailable)
I no branch-and-bound (unrelaxable integer constraints)
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Pattern search
Proposed by Audet & Dennis (2001):
I User-defined discrete neighborhood

I Declare “mesh-isolated minimizer” if no local improvement

I Any (y1, y2) ∈ Z2 with 2y1 = y2 is optimal
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Discussion

Question
Can we guarantee a global minimizer of a convex f (x) when x is
integer?
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Primitive directions

n = 2 n = 3 n = 4 n = 5
k |Ω| # |Ω| # |Ω| # |Ω| #

1 9 8 27 26 81 80 243 242
2 25 16 125 98 625 544 3,125 2,882
3 49 32 343 290 2,403 2,240 16,807 16,322
4 81 48 729 578 6,561 5,856 59,049 55,682

Table: Number of primitive directions, # = |N (xc , 1)|, that emanate from the
origin xc of the domain Ω = [−k, k]n ∩ Zn and that correspond to points in Ω.
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1D

minimize
x

f (x), subject to x ∈ Zn

and assume f (x) convex

. . . underestimator for convex, integer DFO!
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Underestimating f
Formulate piecewise underestimator as MILP
I Interpolation points: X := {x i ∈ Zn}, |X | ≥ n + 1
I Function values: f i := f (x i ) for x i ∈ X
I i := (i1, . . . , in+1) multi-index for n + 1 distinct ij ∈ i with

1 ≤ i1 < . . . , in+1 ≤ |X |

Interpolation Cuts

For X i :=
{
x ij : ij ∈ i

}
obtain cut (c i)T x + bi

. . . only valid in cones . . . by solving linear system:

[
X i e

] [ c i

bi

]
= f i,
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Underestimating f

Lemma: Underestimating Property

f (x) convex and X i = {x i1 , . . . , x in+1} poised, then if follows that

f (x) ≥ (c i)T x + bi, ∀ x ∈ U i :=

n+1⋃
j=1

cone
(
x ij − X i

)
,

where cone
(
x ij − X i

)
is the cone with vertex x ij ∈ X i & rays x ij − x il :
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Solving the subproblem - MILP formulation
Modeling membership in cones

I Binary z ij = 1 if and only if x ∈ cone
(
x ij − X i

)
, for ij ∈ i

I Cut η ≥ (c i)T x + bi −Mi(1−
n+1∑
j=1

z ij ) for big-Mi > 0

I SOS-1 constraint: at most one cone, z ij ≤ 1, active
I Any point x is linear combination of extreme rays (W (X ) set of all

poised subsets)

x = x ij +

n+1∑
l=1,
l 6=j

λ
ij
l (x ij − x il ), ∀ij ∈ i, ∀i ∈W (X )

I Indicate x ∈ cone
(
x ij − X i

)
by making λij

l ≥ −Mλ(1− z ij )

. . . models z ij = 1 ⇒ x ∈ cone
(
x ij − X i

)
for ij ∈ i . . . reverse harder
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An alternative master problem
Challenges of MILP Master model
I MILP model exponential in number of interpolation points
I MILP representation is very weak: uses big-M and tiny-ε

⇒ Commercial solvers cannot solve large instances

First 12 instances of
MIP model while
minimizing the
convex quadratic
abhi on
Ω = [−2, 2]3 ∩ Z3
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An alternative master problem

Replacing CPLEX Solve by Look-Up Table

I Key idea: work in space of original integers, x ∈ Zn

(no additional variables or constraints)
I Replace MILP by look-up-table of underestimator
I Update look-up-table when new points (and therefore new cuts)

are available

Dense/small linear algebra solves ⇒ Fast . . . but not fast enough
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Algorithm 1: Look up algorithm
input: Lower bound η for each point in Ω; Points X with

|X | ≥ n + 1; f̄ = min
xi∈X

f (xi )

while f̄ > min η do

for i ∈ C do

if X i is poised

using R

then
Find points in Ω in one of the cones of X i

using Q

Update η

using Q where η < f̄

Add xk = arg min
x∈Ω

,η<f̄

η and update f̄

Question
Given a set of points X on the integer lattice, is there a way to
generate all subsets of size n + 1 without another in the interior?
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Benchmarking on 24 convex problems

Comparing the number of evaluations before. . .
each method terminates
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Benchmarking on 24 convex problems

Comparing the number of evaluations before. . .
each method first evaluates a global minimizer
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Future

Question
Better approach for determining important cuts using information in
both f - and x-space? (We aren’t using convexity as much as possible.)

Minimizing f (x) = ‖x‖22 on [−4, 4]3
⋃
Z3.

(729 points, 578 primitive directions emanating from origin.)

Question
How to certify (local) optimality when f is nonconvex?
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